728x90
반응형
1. Convolution Neural Network
convolution neural network는 이미지 분류에 가장 많이 쓰이는 인공지능 설계 방식이다.
특이한 점으로는 convolution layer와 pooling layer을 가지고 있다는 것이다.
convolution layer는 이미지의 각각의 부분을 나누어 분석하면서 각 부분의 특징을 분류한다고 할 수 있다.
pooling layer는 convolution layer에서 분류한 요소 중 유의미한 정보를 뽑아내는 것 같고
그렇기에 max pooling을 많이 사용하는 거 같다.
2. 예제
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 0~9의 손글씨 데이터를 받아온다.
train_images = train_images.astype(np.float32) / 255.
test_images = test_images.astype(np.float32) / 255.
train_labels = tf.keras.utils.to_categorical(train_labels, 10)
test_labels = tf.keras.utils.to_categorical(test_labels, 10)
train_images = train_images.reshape(-1, 28, 28, 1)
train_images = tf.convert_to_tensor(train_images)
test_images = test_images.reshape(-1, 28, 28, 1)
test_images = tf.convert_to_tensor(test_images)
print('train_images.shape', train_images.shape)
print('test_images.shape', test_images.shape)
weight_init = keras.initializers.RandomNormal()
conv2d = keras.layers.Conv2D(filters = 5, kernel_size=3, strides=(2, 2), padding='SAME', kernel_initializer=weight_init) #주로 쓰이는 layer 정의
pool = keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='VALID')
model = tf.keras.Sequential([ #model 정의
conv2d,
pool,
conv2d,
pool,
keras.layers.Flatten(),
keras.layers.Dense(256, use_bias=True, kernel_initializer=keras.initializers.he_uniform()),
keras.layers.Activation(tf.keras.activations.relu),
keras.layers.Dense(256, use_bias=True, kernel_initializer=keras.initializers.he_uniform()),
keras.layers.Activation(tf.keras.activations.relu),
keras.layers.Dense(10, use_bias=True, kernel_initializer=keras.initializers.he_uniform())
])
def loss_func(model, images, labels): #비용 함수
logits = model(images, training=True)
loss = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=labels, y_pred=logits, from_logits=True))
return loss
def accuracy_func(model, images, labels): #정확도 함수
logits = model(images, training=False)
prediction = tf.equal(tf.argmax(logits, -1), tf.argmax(labels, -1))
accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
return accuracy
def grad_func(model, images, labels): #기울기 함수
with tf.GradientTape() as tape:
loss = loss_func(model, images, labels)
return tape.gradient(loss, model.variables)
learning_rate = 0.001
batch_size = 1000
training_iterations = len(train_images)
label_dim = 10
optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=learning_rate)
print(train_labels.shape)
for epoch in range(1): #실제 learning 부분
for i in range(6000):
grads = grad_func(model, tf.reshape(train_images[i], [1, 28, 28, 1]), tf.reshape(train_labels[i], [1, 10]))
optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
if i%10==0 :
print("step: [{}], trainloss: {:.8f}, train_accuracy: {:.4f}, test_Accuracy: {:.4f}".format(i, loss_func(model, train_images, train_labels), accuracy_func(model, train_images, train_labels), accuracy_func(model, test_images, test_labels)))
#test
images = test_images[0:100]
labels = model(images, training=False)
labels = np.argmax(labels)
print(images.shape)
for i in range(100):
print(np.argmax(model(images[i:i+1], training=False)))
plt.imshow(images[i], cmap='gray')
plt.show()
|
cs |
1~4 import
1~18 데이터의 전처리
20~21 결과 :
train_images.shape (60000, 28, 28, 1)
test_images.shape (10000, 28, 28, 1)
24 convolution layer 정의 : filters 필터의 갯수, kernelsize 필터의 크기, strides 필터 적용 간격, padding ‘SAME’ input과 output의 크기가 같게 ‘VALID’ padding 없이, kernel_initializer 필터 weight 정의
25 pooling layer 정의
26 model 정의
40~54 비용, 정확도, 기울기 함수 정의
61 optimizer 정의
63 결과 :
(60000, 10)
65~72 실제로 learning을 진행함
결과 :
Test accuracy로 0.9이상의 정확도
75~84 상위 10개 결과 :
728x90
반응형
'Deep Learning' 카테고리의 다른 글
RHO-1: Not All Tokens are What You Need 논문 리뷰 (0) | 2024.05.03 |
---|---|
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets 논문 리뷰 (0) | 2024.04.01 |
손으로 마우스 조종 with Mediapipe (0) | 2024.01.10 |
Recurrent Neural Network in Tensorflow (2) | 2024.01.07 |
Gradient descent algorithm in Tensor flow 경사하강법 (0) | 2023.11.05 |